
International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Component Consistency during Design: A Rule based Evaluation

Technique
N.RAJASEKHAR REDDY

K.PRAVEENA

Abstract—: The automated detection of faulty modules contained by software systems might lead to reduced development

expenses and additional reliable software. In this effort design and development metrics has been used as features to predict
defects in given software module using SVM classifier. A rigorous progression of pre-processing steps were applied to the data

preceding to categorization, including the complementary of in cooperation classes (faulty or otherwise) and the elimination of a

large numeral of repeating instances. The Support Vector Machine in this trial yields a standard accuracy that miles ahead over

existing defect prediction models on previously unseen data.

Index Terms—: Support Vector Machines, Defect prediction, metrics, bug forecasting, Data preprocessing, order effects,

training set

I. INTRODUCTION

SOFTWARE imperfection prediction is the procedure of

locating faulty modules in software and is currently an

extremely active region of research within the software

production community. This is comprehensible as “Faulty
software costs businesses $78 billion per year” ([1], published

in 2001), consequently any attempt to decrease the number of

latent defects that remain inside a deployed arrangement is a

worthwhile Endeavour.

Thus the aspire of this revise is to examine the categorization

performance of the Support Vector Machine (SVM) for

imperfection prediction in the circumstance of eleven data

sets from the NASA Metrics Data Program (MDP)

warehouse; a collection of data sets generated from NASA

software systems and proposed for imperfection prediction

investigate. Although imperfection prediction studies contain
been approved out with these data sets and a variety of

classifiers (including an SVM) in the past, this learn is novel

in that thorough data purification methods are used explicitly.

The most important purpose of static code metrics (examples

of which consist of the numeral of: lines of code, operators

(as projected in [2]) and linearly self-governing paths (as

proposed in [3]) in a component) is to provide software

scheme managers and suggestion toward the superiority of a

software system. Although the entity worth of such metrics

has been questioned by many authors within the software

manufacturing community (see [4], [5], [6]), they still go on

with to be used.
Data mining techniques from the field of artificial intelligence

now make it probable to forecast software defects; undesired

outputs or personal property produced by software, from

staticcodemetrics.

 Associate professor, Department of CSE, Madanapalle

Institute of Technology and Science, Madanapalle,
Andhra Pradesh, India. Rajsekhar007@gmail.com

 Research Scholar, Department of CSE, Madanapalle

Institute of Technology and Science, Madanapalle,

Andhra Pradesh, India.
praveenabhaskar12@gmail.com

Views toward the value of using such metrics for

imperfection prediction are as varied within the software

manufacturing community as those toward the value of static

code metrics. However, the conclusion within this document

suggest that such predictors are helpful, as on the information

used in this learn they predict defective modules with an

standard accuracy that is miles ahead of existing defect

prediction models.

II. RELATED WORK

Most statistical and software metric-based models struggle

with formulating accurate defect predictions [3].Fenton [3]

considers the poor quality of the data as a major cause for the

problem. One approach to address this problem is the

application of expert systems and machine learners [1, 2, 3, 7,

11, and 14] in formulating a predictor. Such an approach is

plausible since expert systems and machine learners handle

noisy data and uncertainty rather well. After considering

various reasons for the disappointing results predicting

software defects, Fenton [3] concludes that a Bayesian Belief
Network would be a possible solution to the problem. Fenton

built a tool based on this paradigm called AID, (Assess,

Improve, Decide). AID was tested on 28 projects from the

Philips Software Centre. The results of this study were

promising, however proper training requires great deal of data

[4].The application of Neural Networks to the problem of

defect detection has received a great deal of attention. Neural

Networks have successfully been applied to predict defects in

a chemical processing plant. The results were 10 to 20 times

better than the application of traditional methods [12].

Hochmann extends the use of Neural Networks to software
defects [7].

Thirty classification models were built with an equal

distribution of fault-prone and non fault-prone software

modules. In the first study, a Genetic Algorithm develops

optimal back-propagation networks to detect software defects

[7]. In the second study, an Evolutionary Neural Network,

(ENN), are compared to Discriminate Analysis. The error

rates for Discriminate Analysis were much higher than for

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

ENNs. A z-test supported the statistical significance of these

findings [7].Evett et al. [1] apply Genetic Programs against

several industrial-level repositories in predicting software

faults. Their operator set includes add, subtract, multiply,

divide, sine, cosine, exponentiation, and logarithms. The

operands consist of various product metrics including
Halstead’s vocabulary, McCabe’s cyclomatic complexity, and

Lines of Code (LOC). The author’s assess their GP models by

ranking data sets according to defect counts and comparing

the top n percent of actual and predicted models where n

ranges from 75 to 90 percent.

III. DATA PREPROCESSIGNAND MACHINE

LEARNING

Recognizing the problems with Neural Networks, when

applied to software defects and the multi co linearity of the

data involved, Neumann [11] developed an enhanced
technique for risk categorization called PCA-ANN. This

approach combines statistics, pattern recognition and Neural

Networks. PCA-ANN essentially enhances the Neural

Network by working with the input data to be orthogonal and

normalizes the data. The enhanced Neural Network performed

significantly better than a pure Neural Network [11].

Hochmann also recognizing the importance of data

preparation used Principal Component Analysis to prepare the

data set [7]. Finally, Mizuno proposes a data equalization

method to improve the performance of an Artificial Neural

Network in technical analysis of the stock market [10].

A. DATASET
The data for the machine learning experiments originate from

a NASA project, which will be referred to as“KC2.” KC2 is a

collection of C++ programs containing over 3000 “c”

functions. The analysis focuses only on those functions

created by NASA developers. This means COTS-based

metrics are pruned from the data set. After eliminating

redundant data, the final tally consists of metrics from 379 “c”

functions. The KC2 data set contains twenty-one software

product metrics based on the product’s size, complexity and

vocabulary. The size metrics include total lines of code,

executable lines of code, lines of comments, blank lines,
number of lines containing both code and comments, and

branch count. Another three metrics are based on the

product’s complexity. These include cyclomatic complexity,

essential complexity, and module design complexity. The

other twelve metrics are vocabulary metrics. The vocabulary

metrics include Halstead length, Alstead volume, Halstead

level, Halstead difficulty, Halstead intelligent content,

Halstead programming effort, Halstead error estimate,

Halstead programming time, number of unique operators,

number of unique operands, total operators, and total

operands. The KC2 data set also contains the defect count for
each module. The majority of the defect values range from 0

to2.

There are 272 instances of zero defects in the modules, 56

instances of one defect, and 25 instances of two defects. Of

the remaining 24 module instances, nine have three defects;

four have four defects, five have five defects, two have six

defects, one has eight defects, one has ten defects, one has

eleven defects, and one has thirteen defects. Thus, ninety

percent of the defect data is concentrated in 27 percent of the

defect value points.

B. THE SUPPORT VECTOR MACHINE

A Support Vector Machine (SVM) is a supervised engine
learning algorithm that can be used for together classification

and failure [9]. SVMs are known as highest border classifiers

as they discover the best separating overexcited plane

between two classes. This procedure can also be functional

recursively to allow the division of any amount of classes.

Only individuals data points that are positioned nearest to this

dividing overexcited plane, known as the support vectors, are

used by the classifier. This enables SVMs to be used

successfully with in cooperation large and small data sets.

Although highest margin classifiers are strictly proposed for

linear classification, they can also be used successfully for
non-linear categorization (such as the case here) via the use of

a kernel purpose. A kernel purpose is used to implicitly map

the data points into a higher-dimensional feature space, and to

take the inner-product in so as to feature gap [10]. The

advantage of using a kernel purpose is that the data is more

likely to be linearly detachable in the higher feature gap.

Additionally, the genuine mapping to the higher-dimensional

gap is by no means needed.

There are a digit of different kinds of kernel functions (any

nonstop symmetric optimistic semi-definite purpose will

suffice) including: linear, polynomial, Gaussian and

sigmoidal. Each has varying characteristics and is suitable for
different difficulty domains. The one used at this time is the

Gaussian radial foundation function (RBF), as it can handle

non-linear problems, requires smaller amount parameters than

other non-linear kernels and is computationally less

challenging than the polynomial kernel [11].

When an SVM is used with a Gaussian RBF kernel, there are

two user- particular parameters, C and . C is the mistake

cost parameter; a changeable that determines the trade-off

between minimizing the preparation error and maximizing the
border. 7 control the width / radius of the Gaussian RBF. The

presentation of an SVM is largely dependent on these

parameters, and the most favorable values require to be

determined for every training set via a methodical search.

C. DATA

The data used within this study was obtained from the NASA

Metrics Data Program (MDP) depository. This depository

currently contains thirteen information sets, each of which

represent a NASA software scheme / subsystem and have the

static code metrics and corresponding burden data for every

comprising unit. Note that a module in this field can refer to a
purpose, process or technique. Eleven of these thirteen data

sets were used in this learn: brief particulars of each are

exposed in Table 1. A total of 42 metrics and a unique unit

identifier comprise each data set (see Table 5, located in the

appendix), with the exemption of MC1 and PC5 which do not

have the decision density metric.

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Name Language

Total

KLOC

No. of

Modules

Defect

Modules

Ratio in

%

CM1 C 20 505 10

KC3 Java 18 458 9

KC4 Perl 25 125 49

MC1 C & C++ 63 9466 0.7

MC2

C

6 161 32

MW1 8 403 8

PC1 40 1107 7

PC2 26 5589 0.4

PC3 40 1563 10

PC4 36 1458 12

PC5 C++ 164 17168 3

Table 1: List of datasets used

IV. METHOD OF IMPLEMENTATION

A. Data Pre-processing

The procedure for cleansing each of the data sets used in this

study is as follows:

Primary Data Set Modifications every of the data sets

primarily had their unit identifier and error density

characteristic removed, as these are not necessary for

categorization. The error count characteristic was then

transformed into a binary goal characteristic for each instance

by assigning all principles greater than zero to defective, non-

defective otherwise.

Removing repetitive and incompatible Instances recurring
feature vectors, whether with the identical (repeated

instances) or dissimilar (inconsistent instances) class labels,

are a known difficulty within the data mining community

[12].

Ensuring that training and testing sets do not contribute to

instances guarantees that all classifiers are being experienced

against previously unnoticed data. This is very important as

testing a analyst upon the data used to instruct it can greatly

overestimate presentation [12]. The removal of incoherent

items from training data is also significant, as it is clearly

illogical in the context of double classification for a classifier
to correlate the same data point with equally classes.

Carrying out this pre-processing phase showed that some data

sets (namely MC1, PC2 and PC5) had an overwhelmingly

elevated number of repeating instances (79%, 75% and 90%

respectively, see Table 2). Although no clarification has yet

been found for these high numbers of repeated instances, it

appears highly improbable that this is a true depiction of the

data, i.e. that 90% of modules within a system / subsystem

could perhaps have the same number of: lines, comments,

operands, operators, exceptional operands, exceptional

operators, conditional statements, etc.

Table 2: The result of removing all repeated and inconsistent
instances from the data

Name

Original

Instances

Instances

Removed

Removed

ratio in

%

CM1 505 51 10

KC3 458 134 29

KC4 125 12 10

MC1 9466 7470 79

MC2 161 5 3

MW1 403 27 7

PC1 1107 158 14

Removing Constant Attributes If an attribute has a preset

value throughout all instances then it is apparently of no use

to a classifier and must be removed.

Each data set had connecting 1 and 4 attributes removed

through this phase with the exception of KC4 that had a total

of 26. Particulars are not shown here outstanding to space

limitations.

Missing Values Missing values are those that are
inadvertently or otherwise missing for a particular attribute in

a meticulous instance of a data set. The only missing

standards within the data sets used in this study were within

the decision density attribute of information sets CM1, KC3,

MC2, MW1, PC1, PC2, and PC3.

Manual inspection of these misplaced values indicated that

they were almost certainly theoretical to be representing zero,

and were replaced consequently.

Balancing the Data All the information sets used within this

study, with the exception of KC4, enclose a much larger

amount of one class (namely, non-defective) than they do the

other. When such excessive data is used with a supervised
classification algorithm such as an SVM, the classifier will be

predictable to over predict the majority class [10], as this will

make lower error rates in the experiment set.

There are different techniques that can be used to poise data

(see [13]). The approach taken here is the simplest still, and

involves randomly under sampling the majority class awaiting

it becomes equal in size to that of the alternative class. The

number of instances that were detached during this under

sample process, along with the closing number of instances

contained within each information set, are shown in Table 3.

Table 3: The result of balancing each data set

Name

Instances

Removed Removed

Final no.

of

Instances

CM1 362 80 92

KC3 240 74 84

KC4 1 1 112

MC1 1924 96 72

MC2 54 35 102

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

MW1 320 85 56

PC1 823 87 126

PC2 1360 97 42

PC3 1133 79 300

PC4 990 74 352

PC5 862 48 942

Normalization All values within the information sets used in

this study are numeric, so to avoid attributes with a huge

range dominating the categorization model all values were

normalized between -1 and +1. Note that this pre-processing
phase was performed immediately prior to training for each

preparation and testing set, and that each preparation / testing

set pair were scaled in the equal manner [11].

Randomizing Instance Order The order of the instances

within each information set was randomized to secure against

order effects, where the performance of a predictor fluctuates

outstanding to certain orderings within the data [14].

Experimental Design

When splitting each of the information sets into preparation

and testing sets it is important to ameliorate potential

anomalous results. To this end we use five-fold cross
legalization. Note that to decrease the effects of sampling bias

introduced when erratically splitting information set into five

bins, the cross-validation progression was repeated 10 times

for each information set in each iteration of the experiment

(described below).

As mentioned in Section 2.2, an SVM with an RBF kernel

requires the selection of optimal principles for parameters C

and 7 for maximal presentation. Both values were chosen for

each preparation set using a five-fold grid search (see [11]), a

progression that uses cross-validation and a wide range of

potential parameter values in a regular fashion. The pair of

values that yield the maximum average accuracy are then
taken as the finest parameters and used when generating the

closing model for classification.

Due to the elevated percentage of information lost when

harmonizing each information set (with the exception of

KC4), the experiment is recurring fifty times. This is in order

to extra minimize the effects of sampling bias introduced by

the chance under sampling that takes place during

complementary.

Pseudo code for the complete experiment carried out in this

revise is shown in Fig 3. Our chosen SVM situation is

LIBSVM [15], an open basis library for SVM
experimentation.

Assessing Performance

The measure used to evaluate predictor performance in this

revise is accuracy. Accuracy is distinct as the ratio of

instances correctly classified out of the whole number of

instances. Although simple, accuracy is a suitable

performance measure for this learns as each test set is fair. For

imbalanced test sets additional complicated measures are

necessary.

Results

 The average consequences for each data set are shown in

Table 4. The results demonstrate an average accuracy of 70%

across all 11 information sets, with a range of 64% to 82%.

Note that there is a moderately high deviation shown within

the consequences. This is to be expected due to the huge
amount of information lost during balancing and supports the

result for the experiment being repeated fifty times (see Fig.

1). It is prominent that the accuracy for some data sets is

tremendously high, for example with statistics set PC4, four

out of every five modules were being properly classified.

The consequences show that all statistics sets with the

exception of PC2 have a mean accurateness greater than two

typical deviations away from 50%. This shows the statistical

significance of the classification consequences when

compared to a dumb classifier that predicts all one class (and

therefore scores an accuracy of 50%). In fig 2 it is clearly
evident that SVM based defect prediction model is miles

ahead in performance over GA based defect prediction.

Table 4: The results obtained from this study.

Name Accuracy

Mean in %
Std.

CM1 68 5.57

KC3 66 6.56

KC4 71 4.93

MC1 65 6.74

MC2 64 5.68

MW1 71 7.3

PC1 71 5.15

PC2 64 9.17

PC3 76 2.15

PC4 82 2.11

PC5 69 1.41

Total
70 5.16

Fig 1: statistical analysis of defect prediction accuracy

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fig 2: Performance Analysis of defect detection using SVM

over GA

ANALYSIS:
Earlier studies ([16], [17], [18]) have also used information

from the NASA MDP repository and an SVM classifier.

Some of these studies mentioned about information pre-

processing, however we consider that it is important to clearly

carry out all of the information cleansing stages described

here. This is particularly true with regard to the elimination of

repeating instances, ensuring that all classifiers are being

experienced against previously unseen information.

The elevated number of repeating instances originate within

the MDP information sets was surprising. Brief analysis of

other fault prediction information sets showed a repeating

average of just 1.4%. We are consequently suspicious of the
suitability of the information held within the MDP repository

for fault prediction and believe that earlier studies which have

used this information and not carried out appropriate

information cleansing methods may be reporting inflated

presentation values.

An example of such a revise is [18], where the authors use an

SVM and four of the NASA information sets, three of which

were used in this learn (namely CM1, PC1 and KC3). The

authors make no mention of information pre-processing other

than the use of quality selection algorithm. They then go on to

account a minimum average precision, the relation of
correctly predicted defective modules to the whole number of

imperfect modules, of 84.95% and a minimum standard

recall, the ratio of defective modules detected as such, of

99.4%. We believe that such elevated classification rates are

highly unlikely in this difficulty domain due to the confines of

static code metrics and that not carrying out suitable data

cleansing methods may have been a issue in these high

consequences.

CONCLUSION

This study has shown that on the information studied here the

carry Vector Machine can be used effectively as a
classification method for fault prediction. We hope to

improve upon these consequences in the near future however

via the use of a one- class SVM; an addition to the original

SVM algorithm that trains upon only imperfect examples, or a

more sophisticated balancing method such as SMOTE

(Synthetic Minority Over-sampling method).

Our consequences also show that earlier studies which have

used the NASA information may have exaggerated the

extrapolative power of static code metrics. If this is not the

casing then we would recommend the explicit certification of

what data pre-processing methods have been applied. Static

regulations metrics can only be used as probabilistic
statements toward the excellence of a module and further

study may need to be undertaken to describe a new set of

metrics particularly designed for defect prediction.

The significance of information analysis and information

quality has been highlighted in this learn; especially with

regard to the elevated quantity of repeated instances establish

within a number of the information sets. The issue of

information quality is extremely important within any

information mining experiment as deprived quality data can

threaten the validity of together the consequences and the

conclusions strained from them [19].

FUTURE DIRECTIONS

The process of equalizing data in an implicitly starved

environment can be considered to be valuable when applied to

a machine learning in the defect prediction domain. Other

research has found it useful when applied to neural networks

in the financial forecasting domain [10].The amount of work

done in this area remains limited to a few studies. It seems

logical to assume that this methodology could be equally

useful when applied to other machine learners, as well as

other domains. More research done in this area would help

validate the conclusions drawn in this paper. Another possible
area of research involves the effects of data equalization on

the performance of the machine learner. It would be useful to

know in which situations this methodology is appropriate and

when it is infeasible due to the size of the data and its effects

upon performance. Finally, it would be useful to apply to the

results from one NASA defect data set to other NASA defect

data sets to determine if the solution is transferable. Also, a

comparison can be made with the solution obtained from the

original data set and from the equalized data set when applied

to a different data set.

REFERENCES
[1]. Levinson, M.: Lets stop wasting $78 billion per year.

CIO Magazine (2001)

[2]. Halstead, M.H.: Elements of Software Science

(Operating and programming sys¬tems series).

Elsevier Science Inc., New York, NY, USA (1977)

[3]. McCabe, T.J.: A complexity measure. In: ICSE ’76:

Proceedings of the 2nd international conference on

Software engineering, Los Alamitos, CA, USA,

IEEE Computer Society Press (1976) 407

[4]. Hamer, P.G., Frewin, G.D.: M.H. Halstead’s

Software Science - a critical exami¬nation. In: ICSE
’82: Proceedings of the 6th international conference

on Software engineering, Los Alamitos, CA, USA,

IEEE Computer Society Press (1982) 197¬206

[5]. Shen, V.Y., Conte, S.D., Dunsmore, H.E.: Software

Science Revisited: A critical analysis of the theory

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

and its empirical support. IEEE Trans. Softw. Eng.

9(2) (1983) 155-165

[6]. Shepperd, M.: A critique of cyclomatic complexity

as a software metric. Softw. Eng. J. 3(2) (1988) 30-

36

[7]. Sommerville, I.: Software Engineering: (8th Edition)
(International Computer Sci¬ence Series). Addison

Wesley (2006)

[8]. Menzies, T., Greenwald, J., Frank, A.: Data mining

static code attributes to learn defect predictors.

Software Engineering, IEEE Transactions on 33(1)

(Jan. 2007) 2-13

[9]. Scholkopf, B., Smola, A.J.: Learning with Kernels:

Support Vector Machines, Regularization,

Optimization, and Beyond (Adaptive Computation

and Machine Learning). The MIT Press (2001)

[10]. Sun, Y., Robinson, M., Adams, R., Boekhorst, R.T.,
Rust, A.G., Davey, N.: Using sampling methods to

improve binding site predictions. In: Proceedings of

ESANN. (2006)

[11]. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide

to support vector classifica¬tion. Technical report,

Taipei (2003)

[12]. Witten, I.H., Frank, E.: Data Mining: Practical

Machine Learning Tools and Tech¬niques. Second

edn. Morgan Kaufmann Series in Data Management

Systems. Mor¬gan Kaufmann (June 2005)

[13]. Wu, G., Chang, E.Y.: Class-boundary alignment for

imbalanced dataset learning. In: ICML 2003
Workshop on Learning from Imbalanced Data Sets.

(2003) 49-56

[14]. Fisher, D.: Ordering effects in incremental learning.

In: Proc. of the 1993 AAAI Spring Symposium on

Training Issues in Incremental Learning, Stanford,

California (1993) 34-41

[15]. Chang, C.C., Lin, C.J.: LIBSVM: a library for

support vector machines. (2001) Software available

at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[16]. Li, Z., Reformat, M.: A practical method for the

software fault-prediction. Infor¬mation Reuse and
Integration, 2007. IRI 2007. IEEE International

Conference on (Aug. 2007) 659-666

[17]. Lessmann, S., Baesens, B., Mues, C., Pietsch, S.:

Benchmarking classification models for software

defect prediction: A proposed framework and novel

findings. Software Engineering, IEEE Transactions

on 34(4) (2008) 485-496

[18]. Elish, K.O., Elish, M.O.: Predicting defect-prone

software modules using support vector machines. J.

Syst. Softw. 81(5) (2008) 649-660

[19]. Liebchen, G.A., Shepperd, M.: Data sets and data
quality in software engineering. In: PROMISE ’08:

Proceedings of the 4th international workshop on

Predictor models in software engineering, New

York, NY, USA, ACM (2008) 39-44.

[20]. Kaminsky, K. and G. Boetticher. "How to Predict

More with Less, Defect Prediction Using Machine

Learners in an Implicitly Data Starved Domain," 8th

World Multi-Conference on Systemics, Cybernetics

and Informatics, Orlando, FL, July 18-21, 2004.

AUTHOR’S DESCRIPTION

N.Rajasekhar Reddy was born in

Madanapalli, February 28.He was

received Bachelor’s degree in

Computer Science in S.V University

and M.Tech degree from Satyabama

University respectively. After working

as a research scholar and an Associate

professor in the Dept. of Computer Science and

Engineering, Madanapalle Institute of Technology

and Science, Andhra Pradesh, India. His research

interest includes Software Engineering, Software

Quality Assurance and Testing. He was published 8

international journal papers and 5 National journal

papers in Software Engineering. He is a member of

SCIE, ISTE, and IEEE, SEI.

K.Praveena was received Bachelor’s

degree in Computer Science in S.V University and

pursuing M.Tech (CSE) Studying from J.N.T University

Anatapur respectively. After working as a research

assistant Computer Science and Engineering Dept

Madanapalle. And an Assistant professor in the Dept. of

Computer Science and Andhra Pradesh, India. His

research interest includes Software Engineering,

Software Quality.She is pursuing her M.Tech project

work under the esteemed guidance of N.Rajasekhar

Reddy.

