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Abstract—: The automated detection of faulty modules contained by software systems might lead to reduced development 

expenses and additional reliable software. In this effort design and development metrics has been used as features to predict 
defects in given software module using SVM classifier. A rigorous progression of pre-processing steps were applied to the data 

preceding to categorization, including the complementary of in cooperation classes (faulty or otherwise) and the elimination of a 

large numeral of repeating instances. The Support Vector Machine in this trial yields a standard accuracy that miles ahead over 

existing defect prediction models on previously unseen data.  

Index Terms—: Support Vector Machines, Defect prediction, metrics, bug forecasting, Data preprocessing, order effects, 

training set 
 

I. INTRODUCTION 

SOFTWARE imperfection prediction is the procedure of 

locating faulty modules in software and is currently an 

extremely active region of research within the software 

production community. This is comprehensible as “Faulty 
software costs businesses $78 billion per year” ([1], published 

in 2001), consequently any attempt to decrease the number of 

latent defects that remain inside a deployed arrangement is a 

worthwhile Endeavour. 

Thus the aspire of this revise is to examine the categorization 

performance of the Support Vector Machine (SVM) for 

imperfection prediction in the circumstance of eleven data 

sets from the NASA Metrics Data Program (MDP) 

warehouse; a collection of data sets generated from NASA 

software systems and proposed for imperfection prediction 

investigate. Although imperfection prediction studies contain 
been approved out with these data sets and a variety of 

classifiers (including an SVM) in the past, this learn is novel 

in that thorough data purification methods are used explicitly. 

The most important purpose of static code metrics (examples 

of which consist of the numeral of: lines of code, operators 

(as projected in [2]) and linearly self-governing paths (as 

proposed in [3]) in a component) is to provide software 

scheme managers and suggestion toward the superiority of a 

software system. Although the entity worth of such metrics 

has been questioned by many authors within the software 

manufacturing community (see [4], [5], [6]), they still go on 

with to be used. 
Data mining techniques from the field of artificial intelligence 

now make it probable to forecast software defects; undesired 

outputs or personal property produced by software, from 

staticcodemetrics. 
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Views toward the value of using such metrics for 

imperfection prediction are as varied within the software 

manufacturing community as those toward the value of static 

code metrics. However, the conclusion within this document 

suggest that such predictors are helpful, as on the information 

used in this learn they predict defective modules with an 

standard accuracy that is miles ahead of existing defect 

prediction models. 

II. RELATED WORK 

Most statistical and software metric-based models struggle 

with formulating accurate defect predictions [3].Fenton [3] 

considers the poor quality of the data as a major cause for the  

problem. One approach to address this problem is the 

application of expert systems and machine learners [1, 2, 3, 7, 

11, and 14] in formulating a predictor. Such an approach is 

plausible since expert systems and machine learners handle 

noisy data and uncertainty rather well. After considering 

various reasons for the disappointing results predicting 

software defects, Fenton [3] concludes that a Bayesian Belief 
Network would be a possible solution to the problem. Fenton 

built a tool based on this paradigm called AID, (Assess, 

Improve, Decide). AID was tested on 28 projects from the 

Philips Software Centre. The results of this study were 

promising, however proper training requires great deal of data 

[4].The application of Neural Networks to the problem of 

defect detection has received a great deal of attention. Neural 

Networks have successfully been applied to predict defects in 

a chemical processing plant. The results were 10 to 20 times 

better than the application of traditional methods [12]. 

Hochmann extends the use of Neural Networks to software 
defects [7].  

Thirty classification models were built with an equal 

distribution of fault-prone and non fault-prone software 

modules. In the first study, a Genetic Algorithm develops 

optimal back-propagation networks to detect software defects 

[7]. In the second study, an Evolutionary Neural Network, 

(ENN), are compared to Discriminate Analysis. The error 

rates for Discriminate Analysis were much higher than for 
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ENNs. A z-test supported the statistical significance of these 

findings [7].Evett et al. [1] apply Genetic Programs against 

several industrial-level repositories in predicting software 

faults. Their operator set includes add, subtract, multiply, 

divide, sine, cosine, exponentiation, and logarithms. The 

operands consist of various product metrics including 
Halstead’s vocabulary, McCabe’s cyclomatic complexity, and 

Lines of Code (LOC). The author’s assess their GP models by 

ranking data sets according to defect counts and comparing 

the top n percent of actual and predicted models where n 

ranges from 75 to 90 percent.  

 

III. DATA PREPROCESSIGNAND MACHINE 

LEARNING 

Recognizing the problems with Neural Networks, when 

applied to software defects and the multi co linearity of the 

data involved, Neumann [11] developed an enhanced 
technique for risk categorization called PCA-ANN. This 

approach combines statistics, pattern recognition and Neural 

Networks. PCA-ANN essentially enhances the Neural 

Network by working with the input data to be orthogonal and 

normalizes the data. The enhanced Neural Network performed 

significantly better than a pure Neural Network [11]. 

Hochmann also recognizing the importance of data 

preparation used Principal Component Analysis to prepare the 

data set [7]. Finally, Mizuno proposes a data equalization 

method to improve the performance of an Artificial Neural 

Network in technical analysis of the stock market [10]. 

A. DATASET 
The data for the machine learning experiments originate from 

a NASA project, which will be referred to as“KC2.” KC2 is a 

collection of C++ programs containing over 3000 “c” 

functions. The analysis focuses only on those functions 

created by NASA developers. This means COTS-based 

metrics are pruned from the data set. After eliminating 

redundant data, the final tally consists of metrics from 379 “c” 

functions. The KC2 data set contains twenty-one software 

product metrics based on the product’s size, complexity and 

vocabulary. The size metrics include total lines of code, 

executable lines of code, lines of comments, blank lines, 
number of lines containing both code and comments, and 

branch count. Another three metrics are based on the 

product’s complexity. These include cyclomatic complexity, 

essential complexity, and module design complexity. The 

other twelve metrics are vocabulary metrics. The vocabulary 

metrics include Halstead length, Alstead volume, Halstead 

level, Halstead difficulty, Halstead intelligent content, 

Halstead programming effort, Halstead error estimate, 

Halstead programming time, number of unique operators, 

number of unique operands, total operators, and total 

operands. The KC2 data set also contains the defect count for 
each module. The majority of the defect values range from 0 

to2.  

There are 272 instances of zero defects in the modules, 56 

instances of one defect, and 25 instances of two defects. Of 

the remaining 24 module instances, nine have three defects; 

four have four defects, five have five defects, two have six 

defects, one has eight defects, one has ten defects, one has 

eleven defects, and one has thirteen defects. Thus, ninety 

percent of the defect data is concentrated in 27 percent of the 

defect value points. 

B. THE SUPPORT VECTOR MACHINE 

A Support Vector Machine (SVM) is a supervised engine 
learning algorithm that can be used for together classification 

and failure [9]. SVMs are known as highest border classifiers 

as they discover the best separating overexcited plane 

between two classes. This procedure can also be functional 

recursively to allow the division of any amount of classes. 

Only individuals data points that are positioned nearest to this 

dividing overexcited plane, known as the support vectors, are 

used by the classifier. This enables SVMs to be used 

successfully with in cooperation large and small data sets. 

Although highest margin classifiers are strictly proposed for 

linear classification, they can also be used successfully for 
non-linear categorization (such as the case here) via the use of 

a kernel purpose. A kernel purpose is used to implicitly map 

the data points into a higher-dimensional feature space, and to 

take the inner-product in so as to feature gap [10]. The 

advantage of using a kernel purpose is that the data is more 

likely to be linearly detachable in the higher feature gap. 

Additionally, the genuine mapping to the higher-dimensional 

gap is by no means needed. 

There are a digit of different kinds of kernel functions (any 

nonstop symmetric optimistic semi-definite purpose will 

suffice) including: linear, polynomial, Gaussian and 

sigmoidal. Each has varying characteristics and is suitable for 
different difficulty domains. The one used at this time is the 

Gaussian radial foundation function (RBF), as it can handle 

non-linear problems, requires smaller amount parameters than 

other non-linear kernels and is computationally less 

challenging than the polynomial kernel [11]. 

When an SVM is used with a Gaussian RBF kernel, there are 

two user- particular parameters, C and . C is the mistake 

cost parameter; a changeable that determines the trade-off 

between minimizing the preparation error and maximizing the 
border. 7 control the width / radius of the Gaussian RBF. The 

presentation of an SVM is largely dependent on these 

parameters, and the most favorable values require to be 

determined for every training set via a methodical search. 

C. DATA 

The data used within this study was obtained from the NASA 

Metrics Data Program (MDP) depository. This depository 

currently contains thirteen information sets, each of which 

represent a NASA software scheme / subsystem and have the 

static code metrics and corresponding burden data for every 

comprising unit. Note that a module in this field can refer to a 
purpose, process or technique. Eleven of these thirteen data 

sets were used in this learn: brief particulars of each are 

exposed in Table 1. A total of 42 metrics and a unique unit 

identifier comprise each data set (see Table 5, located in the 

appendix), with the exemption of MC1 and PC5 which do not 

have the decision density metric. 
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Name Language 

Total 

KLOC 

No. of 

Modules 

Defect 

Modules 

Ratio in 

% 

CM1 C 20 505 10 

KC3 Java 18 458 9 

KC4 Perl 25 125 49 

MC1 C & C++ 63 9466 0.7 

MC2 

C 

 

6 161 32 

MW1 8 403 8 

PC1 40 1107 7 

PC2 26 5589 0.4 

PC3 40 1563 10 

PC4 36 1458 12 

PC5 C++ 164 17168 3 

 

Table 1: List of datasets used  

IV. METHOD OF IMPLEMENTATION 

A. Data Pre-processing 

The procedure for cleansing each of the data sets used in this 

study is as follows: 

Primary Data Set Modifications every of the data sets 

primarily had their unit identifier and error density 

characteristic removed, as these are not necessary for 

categorization. The error count characteristic was then 

transformed into a binary goal characteristic for each instance 

by assigning all principles greater than zero to defective, non-

defective otherwise. 

Removing repetitive and incompatible Instances recurring 
feature vectors, whether with the identical (repeated 

instances) or dissimilar (inconsistent instances) class labels, 

are a known difficulty within the data mining community 

[12]. 

Ensuring that training and testing sets do not contribute to 

instances guarantees that all classifiers are being experienced 

against previously unnoticed data. This is very important as 

testing a analyst upon the data used to instruct it can greatly 

overestimate presentation [12]. The removal of incoherent 

items from training data is also significant, as it is clearly 

illogical in the context of double classification for a classifier 
to correlate the same data point with equally classes. 

Carrying out this pre-processing phase showed that some data 

sets (namely MC1, PC2 and PC5) had an overwhelmingly 

elevated number of repeating instances (79%, 75% and 90% 

respectively, see Table 2). Although no clarification has yet 

been found for these high numbers of repeated instances, it 

appears highly improbable that this is a true depiction of the 

data, i.e. that 90% of modules within a system / subsystem 

could perhaps have the same number of: lines, comments, 

operands, operators, exceptional operands, exceptional 

operators, conditional statements, etc. 

Table 2: The result of removing all repeated and inconsistent 
instances from the data 

Name 

Original 

Instances 

Instances 

Removed 

 

Removed 

ratio in 

% 

CM1 505 51 10 

KC3 458 134 29 

KC4 125 12 10 

MC1 9466 7470 79 

MC2 161 5 3 

MW1 403 27 7 

PC1 1107 158 14 

 

Removing Constant Attributes If an attribute has a preset 

value throughout all instances then it is apparently of no use 

to a classifier and must be removed. 

Each data set had connecting 1 and 4 attributes removed 

through this phase with the exception of KC4 that had a total 

of 26. Particulars are not shown here outstanding to space 

limitations. 

Missing Values Missing values are those that are 
inadvertently or otherwise missing for a particular attribute in 

a meticulous instance of a data set. The only missing 

standards within the data sets used in this study were within 

the decision density attribute of information sets CM1, KC3, 

MC2, MW1, PC1, PC2, and PC3.  

Manual inspection of these misplaced values indicated that 

they were almost certainly theoretical to be representing zero, 

and were replaced consequently. 

Balancing the Data All the information sets used within this 

study, with the exception of KC4, enclose a much larger 

amount of one class (namely, non-defective) than they do the 

other. When such excessive data is used with a supervised 
classification algorithm such as an SVM, the classifier will be 

predictable to over predict the majority class [10], as this will 

make lower error rates in the experiment set. 

There are different techniques that can be used to poise data 

(see [13]). The approach taken here is the simplest still, and 

involves randomly under sampling the majority class awaiting 

it becomes equal in size to that of the alternative class. The 

number of instances that were detached during this under 

sample process, along with the closing number of instances 

contained within each information set, are shown in Table 3. 

  
Table 3: The result of balancing each data set 

 

    

Name 

Instances 

Removed Removed 

Final no. 

of 

Instances 

CM1 362 80 92 

KC3 240 74 84 

KC4 1 1 112 

MC1 1924 96 72 

MC2 54 35 102 
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MW1 320 85 56 

PC1 823 87 126 

PC2 1360 97 42 

PC3 1133 79 300 

PC4 990 74 352 

PC5 862 48 942 

 

 

Normalization All values within the information sets used in 

this study are numeric, so to avoid attributes with a huge 

range dominating the categorization model all values were 

normalized between -1 and +1. Note that this pre-processing 
phase was performed immediately prior to training for each 

preparation and testing set, and that each preparation / testing 

set pair were scaled in the equal manner [11]. 

Randomizing Instance Order The order of the instances 

within each information set was randomized to secure against 

order effects, where the performance of a predictor fluctuates 

outstanding to certain orderings within the data [14]. 

Experimental Design 

When splitting each of the information sets into preparation 

and testing sets it is important to ameliorate potential 

anomalous results. To this end we use five-fold cross 
legalization. Note that to decrease the effects of sampling bias 

introduced when erratically splitting information set into five 

bins, the cross-validation progression was repeated 10 times 

for each information set in each iteration of the experiment 

(described below). 

As mentioned in Section 2.2, an SVM with an RBF kernel 

requires the selection of optimal principles for parameters C 

and 7 for maximal presentation. Both values were chosen for 

each preparation set using a five-fold grid search (see [11]), a 

progression that uses cross-validation and a wide range of 

potential parameter values in a regular fashion. The pair of 

values that yield the maximum average accuracy are then 
taken as the finest parameters and used when generating the 

closing model for classification. 

Due to the elevated percentage of information lost when 

harmonizing each information set (with the exception of 

KC4), the experiment is recurring fifty times. This is in order 

to extra minimize the effects of sampling bias introduced by 

the chance under sampling that takes place during 

complementary. 

Pseudo code for the complete experiment carried out in this 

revise is shown in Fig 3. Our chosen SVM situation is 

LIBSVM [15], an open basis library for SVM 
experimentation. 

Assessing Performance 

The measure used to evaluate predictor performance in this 

revise is accuracy. Accuracy is distinct as the ratio of 

instances correctly classified out of the whole number of 

instances. Although simple, accuracy is a suitable 

performance measure for this learns as each test set is fair. For 

imbalanced test sets additional complicated measures are 

necessary. 

Results 

 The average consequences for each data set are shown in 

Table 4. The results demonstrate an average accuracy of 70% 

across all 11 information sets, with a range of 64% to 82%. 

Note that there is a moderately high deviation shown within 

the consequences. This is to be expected due to the huge 
amount of information lost during balancing and supports the 

result for the experiment being repeated fifty times (see Fig. 

1). It is prominent that the accuracy for some data sets is 

tremendously high, for example with statistics set PC4, four 

out of every five modules were being properly classified. 

The consequences show that all statistics sets with the 

exception of PC2 have a mean accurateness greater than two 

typical deviations away from 50%. This shows the statistical 

significance of the classification consequences when 

compared to a dumb classifier that predicts all one class (and 

therefore scores an accuracy of 50%). In fig 2 it is clearly 
evident that SVM based defect prediction model is miles 

ahead in performance over GA based defect prediction. 

 

Table 4: The results obtained from this study. 

 
Name Accuracy 

Mean in % 
Std. 

CM1 68 5.57 

KC3 66 6.56 

KC4 71 4.93 

MC1 65 6.74 

MC2 64 5.68 

MW1 71 7.3 

PC1 71 5.15 

PC2 64 9.17 

PC3 76 2.15 

PC4 82 2.11 

PC5 69 1.41 

Total 
70 5.16 

 

  

 
Fig 1: statistical analysis of defect prediction accuracy 
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Fig 2: Performance Analysis of defect detection using SVM 

over GA  

 

ANALYSIS: 
Earlier studies ([16], [17], [18]) have also used information 

from the NASA MDP repository and an SVM classifier. 

Some of these studies mentioned about information pre-

processing, however we consider that it is important to clearly 

carry out all of the information cleansing stages described 

here. This is particularly true with regard to the elimination of 

repeating instances, ensuring that all classifiers are being 

experienced against previously unseen information. 

The elevated number of repeating instances originate within 

the MDP information sets was surprising. Brief analysis of 

other fault prediction information sets showed a repeating 

average of just 1.4%. We are consequently suspicious of the 
suitability of the information held within the MDP repository 

for fault prediction and believe that earlier studies which have 

used this information and not carried out appropriate 

information cleansing methods may be reporting inflated 

presentation values. 

An example of such a revise is [18], where the authors use an 

SVM and four of the NASA information sets, three of which 

were used in this learn (namely CM1, PC1 and KC3). The 

authors make no mention of information pre-processing other 

than the use of quality selection algorithm. They then go on to 

account a minimum average precision, the relation of 
correctly predicted defective modules to the whole number of 

imperfect modules, of 84.95% and a minimum standard 

recall, the ratio of defective modules detected as such, of 

99.4%. We believe that such elevated classification rates are 

highly unlikely in this difficulty domain due to the confines of 

static code metrics and that not carrying out suitable data 

cleansing methods may have been a issue in these high 

consequences. 

CONCLUSION 

This study has shown that on the information studied here the 

carry Vector Machine can be used effectively as a 
classification method for fault prediction. We hope to 

improve upon these consequences in the near future however 

via the use of a one- class SVM; an addition to the original 

SVM algorithm that trains upon only imperfect examples, or a 

more sophisticated balancing method such as SMOTE 

(Synthetic Minority Over-sampling method). 

Our consequences also show that earlier studies which have 

used the NASA information may have exaggerated the 

extrapolative power of static code metrics. If this is not the 

casing then we would recommend the explicit certification of 

what data pre-processing methods have been applied. Static 

regulations metrics can only be used as probabilistic 
statements toward the excellence of a module and further 

study may need to be undertaken to describe a new set of 

metrics particularly designed for defect prediction. 

The significance of information analysis and information 

quality has been highlighted in this learn; especially with 

regard to the elevated quantity of repeated instances establish 

within a number of the information sets. The issue of 

information quality is extremely important within any 

information mining experiment as deprived quality data can 

threaten the validity of together the consequences and the 

conclusions strained from them [19]. 
 

FUTURE DIRECTIONS 

The process of equalizing data in an implicitly starved 

environment can be considered to be valuable when applied to 

a machine learning in the defect prediction domain. Other 

research has found it useful when applied to neural networks 

in the financial forecasting domain [10].The amount of work 

done in this area remains limited to a few studies. It seems 

logical to assume that this methodology could be equally 

useful when applied to other machine learners, as well as 

other domains. More research done in this area would help 

validate the conclusions drawn in this paper. Another possible 
area of research involves the effects of data equalization on 

the performance of the machine learner. It would be useful to 

know in which situations this methodology is appropriate and 

when it is infeasible due to the size of the data and its effects 

upon performance. Finally, it would be useful to apply to the 

results from one NASA defect data set to other NASA defect 

data sets to determine if the solution is transferable. Also, a 

comparison can be made with the solution obtained from the 

original data set and from the equalized data set when applied 

to a different data set. 
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